

Structural topology, singularity, and kinematic analysis

J-P. Merlet HEPHAISTOS project INRIA Sophia-Antipolis

Definitions: a closed-loop mechanism whose end-effector is linked to the base by several independent kinematic chains.

early prototype: Gough, 1947

Stewart, 1965: proposal for flight simulators, Gough was reviewer

- Why is this interesting?:
 - excellent load/mass ratio: for serial at best 0.2, parallel robot may reach 10
 - good to excellent accuracy
 - good to very good rigidity

Drawback: limited workspace. But this may change if rigid legs are substituted by cables

Kinematics

- output: the pose of the platform that may be parametrized by a set of parameters ${\bf X}$
- *input*: the lengths ρ of the legs

Kinematics: the relation between ${\bf X}$ and ρ

Kinematics

- Inverse kinematics: $\mathbf{X} \rightarrow \rho$
- Direct kinematics: $\rho \rightarrow \mathbf{X}$

Inverse kinematics:

- coordinates of the A_i are known
- coordinates of C are known
- R: rotation matrix
- $\mathbf{CB} = R\mathbf{CB}_{\mathbf{r}}$
- AB = AO + OC + CB
- $||\mathbf{AB}||^2 = \rho^2$

Direct kinematics

Constraints: $||\mathbf{AB}(\mathbf{X})||^2 = F(\mathbf{X}) = \rho^2$

- a square system of non-algebraic or non-algebraic equations
- admits, in general, a finite number of solutions: up to 40 for the Gough platform
- efficient algorithms for finding all solutions: Groebner basis, interval analysis, elimination
- 20 years of work

Note: direction of the leg (aka bearing) may be used as additional constraints for the DK

Direct kinematics

admits, in general, a finite number of solutions

for fixed values of ρ there are no motion of the platform

 \downarrow

in general: assume that you have found a solution X_0 , then there is no other solution in the neighborhood of X_0 **Rank theorem:** if $J^{-1} = \partial F / \partial X$ has full rank, then there is no other solution in the neighborhood of X_0

Direct kinematics

Infinite rigidity unless J^{-1} is singular

```
If \mathbf{J^{-1}} is singular \Downarrow
```

- platform will move although the leg lengths are fixed
- loss of rigidity
- loss of controlability
- the infinitesimal motion of the platform may lead to another singularity ⇒ finite motion

Variationnal analysis

Time-derivative of the previous system

$$\dot{\rho} = \mathbf{J}^{-1} \dot{\mathbf{X}} \qquad \Delta \rho = \mathbf{J}^{-1} \Delta \mathbf{X}$$

This is not velocity relation as $\dot{\mathbf{X}}$ is not a representative of the angular velocity of the platform

if $\mathbf{J^{-1}}$ is singular there are $\dot{\mathbf{X}} \neq \mathbf{0}$ such that $\dot{
ho} = \mathbf{0}$

 \Downarrow

- infinitesimal motion of the platform for fixed leg lengths
- loss of control and rigidity

11

 close to where J⁻¹ is singular: large amplification factor between the change in leg lengths and the amplitude of the platform motion

Statics analysis

- τ : force in the leg (directed along the vector AB)
- \mathcal{F}, \mathcal{M} : forces/torques acting on the platform

Mechanical equilibrium:

•
$$\sum \tau_i \frac{\mathbf{A_i}\mathbf{B_i}}{\rho_i} = (\mathcal{F}_x, \mathcal{F}_y, \mathcal{F}_z)^T$$

•
$$\sum \tau_i \frac{\mathbf{CB_i} \times \mathbf{A_iB_i}}{\rho_i} = (\mathcal{M}_x, \mathcal{M}_y, \mathcal{M}_z)^T$$

In matrix form:

$$(\mathcal{F}, \mathcal{M})^T = \mathbf{U}(\mathbf{X})^T \tau$$

with the i-th row U_i of U:

$$U_i = \left(\frac{\mathbf{A_i}\mathbf{B_i}}{\rho_i}, \frac{\mathbf{C}\mathbf{B_i} \times \mathbf{A_i}\mathbf{B_i}}{\rho_i}\right)$$

Statics analysis

$$(\mathcal{F}, \mathcal{M})^T = \mathbf{U}(\mathbf{X})^T \tau$$

 $\psi \\ \tau_i = \frac{|\mathbf{M}_i|}{|\mathbf{U}|}$

for a given pose ${\bf X}$ we have here a linear system in the τ

everything is fine unless $|\mathbf{U}| = 0 \Rightarrow \tau_i \to \infty$

Statics analysis

$\mathbf{U}(\mathbf{X}) = \mathbf{H}(\mathbf{X}) \mathbf{J^{-1}}(\mathbf{X})$

where H is a non-singular matrix that is dependent only on the choice of the parameters for representing the orientation of the platform

Hence: U singular $\iff J^{-1}$ singular

Poses ${\bf X}$ where ${\bf U}$ is singular are called singular poses of the parallel robot

Singularity analysis

Why studying singularities ?

Drawbacks:

- loss of control
- possible breakdown of the robot due to large forces in the leg
- **Advantages**
 - high sensitivity of the \(\tau\) with respect to \(\mathcal{F}\), \(\mathcal{M}\): force/torque sensor

Singularity analysis

What is the problem ?

- we have a matrix $\mathbf{U}(\mathbf{X})$ in analytical form
- singularity are obtained for ${\bf X}$ such that $|{\bf U}({\bf X})|=0$

 \downarrow

just compute $|\mathbf{U}(\mathbf{X})| = 0$ and solve ...

but

- $|\mathbf{U}(\mathbf{X})|$ is a huge expression
- and solving if in X is not a trivial task

We need tools and methodologies

Singularity analysis

Historical background

- In 1645, Sir Christopher Wren shows that curved surface may be built with line generators
- In 1813 Cauchy shows that the singularity of an articulated octahedron could be obtained only for concave configurations
- In 1908 the subject of the Prix Vaillant from the Academy of Sciences was to determine under which conditions a parallel mechanism may exhibit finite motion (prize won by Borel and Bricard)

Plücker vectors

Let \mathcal{L} be a line in space and select two points M_1, M_2 on this line Let P be the 6-dimensional vector

$$\mathbf{P} = \left(\begin{array}{c} \frac{\mathbf{M_1M_2}}{||\mathbf{M_1M_2}||} \\ \frac{\mathbf{OM_1 \times OM_2}}{||\mathbf{M_1M_2}||} \end{array}\right) = \left(\begin{array}{c} \mathbf{p} \\ \mathbf{q} \end{array}\right)$$

Plücker vectors

- ${\bf P}$ is the normalized Plücker vector of the line ${\cal L}$
 - a line has a unique normalized Plücker vector
 - let P_1, P_2 be the Plücker vectors of two lines $\mathcal{L}_1, \mathcal{L}_2$. These two lines will meet iff $p_1.q_2 + q_1.p_2 = 0$

Remember

$$U_i = \left(\frac{\mathbf{A_i}\mathbf{B_i}}{\rho_i}, \frac{\mathbf{C}\mathbf{B_i} \times \mathbf{A_i}\mathbf{B_i}}{\rho_i}\right)$$

 U_i is the Plücker vector of leg i

if ${\bf U}$ is singular, then we have a linear dependency between the Plücker vectors of the legs

- the rank of a variety spanned by a set of n Plücker vectors if the rank of U
- the rank cannot be greater than 6
- if \mathbf{U} is singular then the rank will be lower than 6

A singularity will occur only for certain geometrical configurations of the robot that may be determined using Grassmann geometry

Variety with rank from 1 to 3

Use example

- three Plücker vectors P_1, P_2, P_3 span a variety of dimension $< 3 \Rightarrow$ singularity
- Grassmann: this occurs only if the lines lie in the same plane and meet at a common point
- writing this condition as function of X gives the only singularity condition

Variety with rank from 4 to 5

- Grassmann geometry gives a set of geometrical condition for which a singularity will occur
- each such condition can be expressed as function of ${\bf X}$ (factorization of $|{\bf J}^{-1}|)$
- plugging in the singularity condition in J⁻¹ and looking at the kernel of this matrix provides the nature of the infinitesimal motion

All lines in a plane or intersecting the same point in this plane

All lines intersecting the same line

- A very important practical problem
 - determine if a singularity exists within a given workspace for X
 - binary answer: yes or no
 - if a singularity exists we are not interested in its location
- **Classical** approach
 - use optimization (e.g. find ${f X}$ that minimize $|{f U}({f X})|^2$
 - unsafe, slow

- To solve efficiently this problem we will use interval analysis Interval $\mathcal{X} = [\underline{x}, \overline{x}]$
- Assume that we have
 - a function F(x)
 - a range \mathcal{X} for x

interval evaluation of F when $x \in \mathcal{X}$: a range [A, B] such that

 $\forall x \in \mathcal{X} \text{ we have } : A \leq F(x) \leq B$

How to construct an interval evaluation ? the simplest one is the **natural evaluation**: substitute each mathematical operator by its interval equivalent

Example:
$$f(x) = x + \sin(x), x \in [1.1, 2]$$

$$F([1.1,2]) = [1.1,2] + \sin([1.1,2])$$

= $[1.1,2] + [0.8912,1] = [1.9912,3] = [A,B]$

Properties

- interval equivalent for any mathematical operators: no limitation to algebraic equations
- can be implemented to take into account round-off errors: numerically robust
- if $0 \notin [\underline{F}, \overline{F}]$, then there is no x in \mathcal{X} that cancel F
- extrema of F are bounded by the values of A, B

Bounded workspace: \mathcal{W} (defined by a set of intervals for X, defining a box in a *m* dimensional space) Ingredients:

- choose an arbitrary point X_0 in \mathcal{W} , compute $|U(X_0)|$ with interval arithmetic, determine its sign (say > 0)
- *L*: a list of *n* boxes \mathcal{B}_j with initially $n = 1, L = \{\mathcal{W}\}$

If we find a pose X_1 such that $|U(X_1)| < 0$, then \mathcal{W} includes at least one singularity

Algorithm set j=1

- 1. if j > n, then exit, **NO SINGULARITY**
- 2. compute the interval evaluation of $|\mathbf{U}(\mathcal{B}_j)| = [A_j, B_j]$
- 3. if $A_j > 0$, then j = j + 1, go to 1
- 4. if $B_j < 0$, then exit, **SINGULARITY**
- 5. if $A_j < 0$ and $B_j > 0$, then split \mathcal{B}_j into 2 boxes that are added to \mathcal{L} , j = j + 1, n = n + 2, go to 1

Very fast algorithm

Note: uncertainties in the geometry of the robot may be taken into account to ensure that the **real** robot is singularity-free

Several indexes have been proposed to characterize the closeness to a singularity

- condition number of ${\bf U}$
- dexterity
- . . .

But all of them have drawbacks and none of them have a physical meaning

Another approach: investigate the workspace of the robot such that all τ satisfy $|\tau_i| \leq \tau_{max}$

Finding this workspace:

- analytically for simple robot
- interval analysis for more complex robot

2 dof simple robot

On the border of the workspace we have for at least one leg

•
$$\tau_{max}|\mathbf{U}| = |\mathbf{M_i}|$$

• or $au_{max}|\mathbf{U}| = |\mathbf{M_i}|$

These equations define curves in the plane

A simple algorithm allows one to find the workspace border

Complex robot: cross-section for a 6 dof robot by using interval analysis

Conclusion

- singularity are relatively well mastered for parallel robot in terms of analysis for a given architecture
- analysis may take into account uncertainties in the geometry
- weaker for general analysis of mechanical architectures
- prospective:
 - bearing may be measured to simplify the direct kinematics: but measured with uncertainties
 - cable instead of rigid leg: they can only pull
 - cable with deformation (elasticity, sagging)