How theory on parallel robot singularities was used in order to solve sensor-based control problems

Sébastien Briot

Laboratoire des Sciences du Numérique de Nantes (LS2N)

IFAC WC 2017, July 9
Introduction

• Singularities appearing when observing image features (e.g. with a camera) = a huge challenge in visual servoing
Introduction

• Singularities appearing when observing image features (e.g. with a camera) = a huge challenge in visual servoing

• To the best of our knowledge, only known for three 3-D image points (singularity cylinder)

• Issue with singularities: interaction matrix cannot be inverted anymore = loss of controllability
Introduction

In order to avoid singularities

Increased number of image features (redundancy):
- Pb of local minima
- Proof that there is no singularity?

Determining the singularity cases stays an open problem
Introduction

Recently, the “Hidden Robot Concept” was developed

- A tool made first for analyzing the singularities in visual servoing dedicated to PKMs
- Basic idea ⇒ Interaction matrix ≡ Inv. Jacobian matrix of a virtual PKM
Introduction

Recently, the “Hidden Robot Concept” was developed

- A tool made first for analyzing the singularities in visual servoing dedicated to PKMs
- Basic idea \Rightarrow Interaction matrix $\equiv \text{Inv. Jacobian matrix of a virtual PKM}$

For instance, when observing the **leg directions** of the GS platform

- Real robot $= 6$–$U\underline{P}S$
Recently, the “Hidden Robot Concept” was developed

- A tool made first for analyzing the singularities in visual servoing dedicated to PKMs
- Basic idea \Rightarrow Interaction matrix \equiv Inv. Jacobian matrix of a virtual PKM

For instance, when observing the **leg directions** of the GS platform

- Real robot $= 6-$UPS
- Virtual robot $= 6-$UPS
Introduction

Here

We show how we used the hidden robot concept in order to solve, for the first time, the singularity in

1. the observation of n image points ($n \geq 3$)
2. the observation of three lines
3. the leg-based visual servoing of parallel robots
Observation of an image point

- **Image plane**
- **Camera center**
- **Observation point** m_1 with coordinates (x,y)
- **Point in 3D space** M_1 with coordinates (X,Y,Z)
- **Line of sight** L_1
Observation of an image point
Observation of an image point

- Camera center C
- Image plane
- Point M_1 with coordinates (x,y)
- Line L_1
- Depth z_1
Observation of an image point

Image plane

C

Camera center

$m_1 (x, y)$

L_1

M_1
Observation of an image point
Observation of an image point

A **UPS** kinematic chain which allows for the same motion of the point M_i
Observation of three image points
Observation of three image points

A 3–UPS robot which is the virtual robot architecture with its inverse kinematic Jacobian matrix similar to the interaction matrix

\[\dot{s} = L\tau \quad \text{//} \quad \dot{q} = J_{inv}\tau \]
The three active cardan joints are grouped at the same point.
P3P

The three active cardan joints are grouped at the same point.

Passive prismatic joints

Passive spherical joints
P3P

[Tischler et al., 1998]
P3P

[Tischler et al., 1998]
P3P

Examples of undetermined configurations

[Tischler et al., 1998]
Singularities

Thanks to the hidden robot analogy

Singularities of the interaction matrix = singularities of the virtual parallel robot

Singularities of parallel robots

Can be studied by using several (complementary) tools

Singularities

Thanks to the hidden robot analogy
Singularities of the interaction matrix = singularities of the virtual parallel robot

Singularities of parallel robots
Can be studied by using several (complementary) tools

In our case (3 points), it can be proven that
The planes \mathcal{P}_i ($i = 1, 2, 3$) and \mathcal{P}_4 (containing all 3-D points) have a non-null intersection
Singlarities when observing 3 points
Singularities when observing 3 points
Singularities when observing 3 points
Singularities when observing 3 points

- Cylinder of singularities
- Image plane
- Camera center
- Points and lines

\[A: \text{Cylinder of singularities} \]

\[C (\text{camera center}) \]
Singularities when observing n points ($n > 3$)

Possible if and only if

- All singularity cylinders associated with any subset of 3 points have a common intersection
- AND all kernels of the interaction matrices are identical

After (more complex) mathematical derivations, we proved that the conditions of singularity when n coplanar points are observed only appear if and only if all 3-D points and the optical center are located on the same circle.
Singularities when observing n points ($n > 3$)

Examples of undetermined configurations
Simulations
Simulations

\[\frac{1}{\kappa} \text{ (inverse of the condition number)} \]

Parameter \(s \):

- \(0 \)
- \(0.2 \)
- \(0.4 \)
- \(0.6 \)
- \(0.8 \)
- \(1 \)
- \(1.2 \)
- \(1.4 \)

\[8 \times 10^{-3} \]
Observation of an image line

\[\mathcal{L}_i ?? \]
Observation of an image line
Observation of an image line

A $UPRC$ kinematic chain which allows for the same motion of the line \mathcal{L}_i.
Observation of three image lines
Observation of three image lines

A 3–\textit{UPRC} robot which is the virtual robot architecture with its inverse kinematic Jacobian matrix similar to the interaction matrix

\[
\dot{s} = \mathbf{L}\tau \quad \text{//} \quad \dot{\mathbf{q}} = \mathbf{J}_{\text{inv}}\tau
\]
Thanks to the hidden robot analogy

Singularities of the interaction matrix = singularities of the virtual parallel robot

Singularities of parallel robots

Can be studied by using several (complementary) tools

Singularities

Thanks to the hidden robot analogy
Singularities of the interaction matrix = singularities of the virtual parallel robot

Singularities of parallel robots
Can be studied by using several (complementary) tools

In our case (3 lines), singu. cond. iff
\[f_1 = f_{11}^T (f_{21} \times f_{31}) = 0 \]
\[f_2 = m_{12}^T (m_{22} \times m_{32}) = 0 \]
where \(\xi_{ij} = [f_{ij}^T \ m_{ij}^T]^T \)
Singularities

In order to simplify the problem

- Consider the “zero” platform orientation
- General case obtained by a simple rotation

\[
\begin{bmatrix}
X & Y & Z
\end{bmatrix}^T = \mathcal{R} \begin{bmatrix}
X' & Y' & Z'
\end{bmatrix}^T
\]

(1)

where

- \(X, Y\) and \(Z\): position of the origin of the object frame \(\mathcal{F}_b\) in the camera frame when considering the “zero” platform orientation
- \(X', Y'\) and \(Z'\): position of the origin of the object frame for the considered “non-zero” platform orientation
- \(\mathcal{R}\) the rotation matrix between the two cases
Three coplanar lines with no common intersection point

\[f_1 = 0 \Leftrightarrow Z = 0 \Rightarrow \text{Lines + optical center in the same plane} \]

\[f_2 = 0 \Leftrightarrow Z(X^2 + Y^2 - \rho^2) = 0 \Rightarrow \text{Singularity cylinder!} \]
Three coplanar lines with a common intersection point

\[f_1 = 0 \Rightarrow \text{Singular for any object configuration} \]

\[f_2 = 0 \Leftrightarrow Z(X^2 + Y^2) = 0 \]

⇒ Camera center \(O \) lies on the line which passes through \(Q \) and which is perpendicular to all vectors \(U_i \)
Three lines in space with a common intersection point

\[\overrightarrow{OQ} = [X \ Y \ Z]^T, \ U_1 = [1 \ 0 \ 0]^T, \]
\[U_2 = [a \ b \ 0]^T, \ U_3 = [c \ d \ e]^T \]

(4)

\[f_1 = 0 \Rightarrow \text{For any object configuration} \]

\[f_2 = 0 \iff b(adeY^3 + ((-ad^2 + bcd + ae^2)Z + (ac - bd)eX)Y^2 - e(bcX^2 + (ad - bc)Z^2 + 2beXZ)Y + ((-ad^2 + bcd - ae^2)X^2Z + (bd + ac)eXZ^2)) = 0 \]

(5)

\[\Rightarrow \text{The origin of the body frame belongs to a cubic surface parameterized by } f_2 = 0. \]
Three orthogonal lines in space

\[(X \ Y \ Z) = (Q \ 1 \ U \ 2 \ U \ 3 \ U \ 1 \ L \ 3 \ L \ 2 \ L) \]

\[f_1 = 0 \Leftrightarrow aXY + bYZ - cXZ - abc = 0 \]
\[f_2 = 0 \Leftrightarrow acX - abY + bcZ - XYZ = 0 \]

⇒ Expression \(f_1 \) represents a quadric surface while expression \(f_2 \) is a cubic surface
Three lines, two of them being parallel

\[f_1 = 0 \iff Z(dZ - eY) = 0 \]
\[f_2 = 0 \iff Z(X(d^2 + e^2) - cYd - cZe) = 0 \] (7)

- \(Z = 0 \), which occur when the plane \(\mathcal{P} \) containing \(\mathcal{L}_1 \) and \(\mathcal{L}_2 \) also contains the optical center,
- \(eY - dZ = 0 \) is the plane containing \(\mathbf{U}_1, \mathbf{U}_3 \) and the optical center,
- \(X(d^2 + e^2) - cdY - ceZ = 0 \) is the plane containing \((\mathbf{U}_1 \times \mathbf{U}_3) \), \(\mathbf{U}_3 \) and the optical center.
Three general lines in space

Condition $f_1 = 0$ provides the expression of a quadric surface while $f_2 = 0$ leads to a cubic surface.
Example for three general lines in space

\[f_1 = 0 \]
\[f_2 = 0 \]
Simulation 1 (general case)
Simulation 1 (general case)
Simulation 2 (lines are perpendicular)
Simulation 2 (lines are perpendicular)
Leg-based visual servoing of parallel robots

Many approaches, among which

- Direct observation of the end-effector [Paccot et al., 2008]
Leg-based visual servoing of parallel robots

Many approaches, among which

• Leg observation [Özgür et al., 2011]
Leg-based visual servoing of parallel robots

Problems / Questions

• The observation of m leg directions ($m < n$) among the n legs is enough,
Leg-based visual servoing of parallel robots

Problems / Questions

- The observation of m leg directions ($m < n$) among the n legs is enough,
- End-effector convergence issues, even if all leg directions did converge

![Diagram of desired and initial platform configurations with trajectory of the platform.](attachment:figure.png)
Leg-based visual servoing of parallel robots

Problems / Questions

- The observation of m leg directions ($m < n$) among the n legs is enough,
- End-effector convergence issues, even if all leg directions did converge
- Existence of local minima
Leg-based visual servoing of parallel robots

Problems / Questions

• The observation of m leg directions ($m < n$) among the n legs is enough,
• End-effector convergence issues, even if all leg directions did converge
• Existence of local minima
• Interaction model singularities
Leg-based visual servoing of parallel robots

Answers thanks to the hidden robot concept
Leg-based visual servoing of parallel robots

Answers thanks to the hidden robot concept

Idea

We control a virtual robot architecture corresponding to the interaction model (different from the real robot)
Leg-based visual servoing of parallel robots

Idea

We control a virtual robot architecture corresponding to the interaction model (different from the real robot)

Usual encoder-based control

\[\mathbf{q} \rightarrow \mathbf{x} \ (\mathbf{q}: \text{motor encoder measurements}) \]
Leg-based visual servoing of parallel robots

Idea
We control a virtual robot architecture corresponding to the interaction model (different from the real robot)

Leg-based visual servoing
$u \Rightarrow x$ (u: virtual actuator measurements)
Leg-based visual servoing of parallel robots

Leg-observation-based control

Gough-Stewart platform

- Real robot ⇒ 6–UPS
Leg-based visual servoing of parallel robots

Leg-observation-based control

Gough-Stewart platform

- Real robot \Rightarrow 6–UPS
- Hidden (virtual) robot \Rightarrow 3–UPS (case of the minimal observation)
Leg-based visual servoing of parallel robots

Leg-observation-based control

Gough-Stewart platform

- Real robot ⇒ 6–UP_S
- Hidden (virtual) robot ⇒ 3–UP_S (case of the minimal observation)
Leg-based visual servoing of parallel robots

Leg-observation-based control

Gough-Stewart platform

- Real robot \Rightarrow 6–UPS
- Hidden (virtual) robot \Rightarrow 3–UPS (case of the minimal observation)
Leg-based visual servoing of parallel robots

Generalisation to families of parallel robots

Planar robots: Example of the 3–RRR robot
Leg-based visual servoing of parallel robots

Generalisation to families of parallel robots

Spatial robots: Example of the Quattro
Leg-based visual servoing of parallel robots

Generalisation to families of parallel robots

Experimental validation
Leg-based visual servoing of parallel robots

Use of the hidden robot concept for analyzing the controllability

Class 1: Robots which are uncontrollable with the observation of the leg directions

A *PRRRP* robot

Unconstrained translation

Hidden robot: a *PRRRP* robot
Leg-based visual servoing of parallel robots

Use of the hidden robot concept for analyzing the controllability

Class 2: Robots which are partially controllable (in their workspace) with the observation of the leg directions
Leg-based visual servoing of parallel robots

Use of the hidden robot concept for analyzing the controllability

Class 3: Robots which are fully controllable (in their workspace) with the observation of the leg directions
Leg-based visual servoing of parallel robots

Use of the hidden robot concept for analyzing the controllability

Class 4: Robots which are fully controllable (in their workspace) thanks to additional measurements

A *PRRRP* robot

Hidden robot: a *PRRRP* robot
Conclusions

In this talk,

- I presented a tool named the “hidden robot concept” able to solve the determination of the singularity cases visual servoing based on the observation of geometric features
- we rigorously proved the conditions of singularity for n coplanar points and 3 lines
- we discussed about the generalization of the “hidden robot concept” to other case studies
Conclusions

The hidden robot concept

- a tangible visualization of the mapping between the observation space and the Cartesian space
- allowed to change the way we defined the problem (visual servoing community / mechanical engineering community ⇒ dual problems)
Conclusions

The hidden robot concept

• a tangible visualization of the mapping between the observation space and the Cartesian space
• allowed to change the way we defined the problem (visual servoing community / mechanical engineering community ⇒ dual problems)

Tools used here

• Easily extendable to the rigidity-based control theory
• But useful for you?
Conclusions

Singularity when using bearing measurements
Conclusions

Singularity when using bearing measurements

\[C \text{ (camera center)} \]

\[A: \text{Cylinder of singularities} \]

\[M_1, M_2, M_3 \]

\[m_1, m_2, m_3 \]
Conclusions

Singularity when using bearing measurements

Uniqueness? ⇒ up to 8 solutions
Adding more measurements? ⇒ Bad choice still leads to singularities
Concluding remarks

Colleagues

Students